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A R E F I N E D  EQUATION OF STATE FOR UNREACTEO 
HEXANITROSTILBENE 

Robert E. Setchell and Paul A. Taylor 
Sandia National Laboratories 
Albuquerque, New Mexico 87185 

ABSTRACT 

An equation of state for an explosive prior to chemical 

decomposition is a necessary part of an analytical model for 

initiation processes. In previous studies of hexanitrostilbene 

(HNS), a particular equation of state formulation has been used 

to calculate conditions in shock-compressed material, including 

temperatures. Measured shock Hugoniot properties were used to 

find values for parameters appearing in this formulation. In the 

present study, careful measurements of the isothermal compression 

of different HNS powders, together with more recent values for 

thermophysical constants, are used to revise the previous equa- 

tion of state formulation. Approximate compaction relations for 

porous HNS are then used to calculate shock Hugoniot for 

materials having different initial densities. The predicted 

states agree closely with available shock Hugoniot data. For 

shock pressures above 2 . 5  GPa. the Hugoniot curyes predicted in 

the present study depart progressively from previous predictions. 

states 
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A reverse-impact experiment was conducted to measure a shocked, 

unreacted state at a pressure of 8.5 GPa, which is more than 

twice the highest Hugoniot pressuxe observed previously. The 

measured state agrees closely with the revised equation of state 

formulation. An important consequence of the present study is 

that predicted shock temperatures are much higher than previous 

predictions. 

JNTRODUCTI ON 

An equation of state for an explosive in its unreacted 

condition is required to establish the thermodynamic states 

initially produced in the material by a mechanical or thermal 

stimulus, and to predict the subsequent changes in state 

properties of the unreacted component once chemical decomposition 

begins. Thus, an equation of state for the unreacted explosive 

is an essential part of any analytical model for initiation 

processes. Direct knowledge of the thermodynamic properties of 

most condensed explosives, however, is typically restricted to 

properties measured near ambient conditions and to experimental 

pressure-compression curves corresponding to isotherms or to the 

shock Hugoniot. 

Hexanitrostilbene (HNS) is a granular explosive, typically 

pressed without a binder, with good stability under high tempera- 

ture and vacuum environments.’ Sheffield et a1.2 measured shock 

Hugoniot properties at pressures below 4.0 GPa for HNS materials 

having initial densities from 1.0 to 1.7 g/cm (crystal density 3 
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3 is 1.74 g/cm ).  From these measurements and available ther- 

nophysical data, they established a particular equation of state 

for fully shock-compacted (solid), unreacted HNS. Hayes and 

Mitchell3 and Hayes4 used the explicit temperature dependence in 

this equation of state to examine chemical decomposition of HNS 

following shock compression. In these studies, the internal 

energy increase was partitioned between isentropically compressed 

material and preferentially heated "hot spot" material generated 

during shock compaction of the initially porous explosive. 

Relationships were established between initial shock pressures, 

predicted hot spot temperatures, and hot spot decomposition times 

inferred from experimental observations. Decomposition times 

were much shorter than those predicted by a single-step Arrhenius 

rate law using constants determined at lower temperatures. More 

recently, hexanitrostilbene has been examined under impact condi- 

tions that produce much higher shock pressures. A continuing 

interest exists in our laboratory to understand the process of 

shock initiation in this explosive at pressures well above those 

used in earlier studies, thus prompting a fresh examination of 

the equation of state formulation. 

In the present work, experimental studies of the static 

compaction HNS powders have led to a new description for the 

isothermal compressibility of the solid material. When incor- 

porated into the previous equation of state formulation, along 

with the most recent measurements of thermophysical properties, 

of 
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significantly different conditions are predicted for shock com- 

pression to pressures above 2.5 GPa. The accuracy of the new 

equation of state is substantiated by the measurement of a 

shocked, unreacted state at a pressure more than twice that 

obtained in previous Hugoniot studies. 

PREVIOUS EOUATION OF STATE FOR HNS 

Sheffield et a1.2 proposed the following specific formula- 

tion for the Helmholtz free energy of solid, unreacted HNS: 

where T is temperature, V i s  specific volume, C is the specific 

heat at constant volume, y is the Gruneisen coefficient, and BT 

is the isothermal bulk modulus. A zero subscript identifies 

ambient conditions. Four assumptions are required in the deriva- 

tion of this formulation: 

V 

(i) The internal energy can be separated into one com- 

ponent which depends on temperature only, and a second 

component which depends on specific volume only. 

(ii) The specific heat at constant volume, Cv, is constant. 

(iii) The ratio of the Grcniesen coefficient to specific 

volume, r/V. is constant. 

(iv) The isothermal compression of solid HNS is described 

by the compressibility of a Murnaghan solid. 
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A summary of the derivation of this formulation for the 

Helmholtz free energy is given in the Appendix. Discussions of 

the assumptions used in the derivation can be found in Refs. ( 6 -  

9). Hayes* first used equations of state in the form of Eq. (1) 

to represent the initial and final phases of potassium chloride 

during shock-induced, polymorphic phase transformations. Johnson 

et al.’ used an equation of state in this form to the 

liquid phase in shock-compressed bismuth. Following the initial 

use of this formulation by Sheffield et a1.2 to represent solid, 

unreacted HNS, it was used by in subsequent studies of 

the shock initiation of this explosive. 

represent 

In order to use Eq. (1) to calculate thermodynamic states, 

values must be specified for four parameters: the initial 

, the exponent N in the Murnaghan isothermal bulk modulus 

expression for isothermal compressibility (see Appendix), the 

ratio of the Griineisen coefficient to specific volume 7 / V ,  and 

the specific heat at constant volume Cv. Thermophysical 

properties available to Sheffield et a1.* consisted of a measured 

value of the coefficient of linear thermal expansion, and an 

estimate of the specific heat at constant pressure. Without 

experimental data on the isothermal compressibility of solid HNS, 

it was necessary to infer values for the four equation of state 

parameters from shock Hugoniot data for HNS materials at dif- 

ferent initial densities. The procedure they used” involves an 

BTO 
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important assumption. Regardless of the density of the initially 

porous HNS material, all shock-compressed states are assumed to 

lie on the Hugoniot curve corresponding to initially solid (non- 

porous) HNS in the p-V plane. That is, they assumed that an 

initially porous sample shocked to some specific volume V will 

have the same pressure as an initially non-porous sample shocked 

to the same specific volume. With this assumption, Hugoniot data 

for porous HNS in terms of shock and particle velocities can be 

plotted in a reduced form so as to represent the corresponding 

Hugoniot curve for initially solid HNS. A fit to these points 

then provides the remaining information needed to calculate 

values for the four parameters in the equation of state. The set 

of parameter values used in Refs. (2-4) are listed in Table I. 

I. Orieinal Parameter Values for  

- 14.6 GPa BT 

N - 3.465 
3 

Y P  - 2.41 g/cm 

7 2 2  - 1.5 x 10 CRI /S -K 
cV 

Very good agreement was obtained between shock Hugoniot condi- 

tions predicted with these parameters and the conditions obtained 

experimentally. 

Differences in the p-V shock Hugoniot curves for an 

initially solid material and for an initially porous sample of 

the same material have been examined in a number of studies. For 
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example, if a Mie-Grimeisen equation of state is assumed for the 

porous material, an expression can be derived for the difference 

in shock pressures between an initially solid material shocked to 

some volume and an initially porous sample of the same 

material shocked to the same specific volume. 7'11 The shock 

pressure for the porous material is found to be higher by an 

amount that depends on tke differences in initial densities and 

on the value of r/v at the particular specific volume, in agree- 

ment with available Hugoniot data for porous aluminum and 

~ o p p e r . ~  This result suggests that the procedure used to deter- 

mine the parameters listed in Table I may have given a non-unique 

set of values. 

specific 

JSOTHERMAL COW RESSIBILITY OF HNS POWDERS 

A typical initial density for HNS in current applications is 

approximately 1.6 g/cm , corresponding to a porosity (void volume 

fraction) of 0.08. During shock initiation, ignition first 

occurs at discrete hot spots formed by the dynamic shock compres- 

sion of the porous material. An understanding of this dynamic 

compaction process is an important element in our goal of 

developing a predictive model for shock initiation of this ex- 

plosive. With this purpose in mind, we previously examined the 

dynamic and static compressibility of various HNS materials 

having different initial grain size distributions. l2 The static 

measurements indicated that porosity persisted in the HNS samples 

up t o  pressures of at least 6 kbars, but these experiments were 

3 
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not analyzed in any detail. In the present study, these earlier 

static measurements are carefully re-examined in order to infer 

the isothermal compressibility of solid HNS. 

The static experiments were performed under the conditions 

of uniaxial strain compression. Starting with loose HNS powders 

under vacuum, a hydraulic compression system was used to measure 

how the volume of a given mass of powder varied with applied 

axial stress at levels up to 2.0  GPa. The compression system 

consisted of two polished tungsten carbide pistons, 6 .35  mm in 

diameter, closely fitting within a polished, thick-walled (50 .0  

mm outer diameter), tungsten carbide cylinder. In each experi- 

ment, the volume between the pistons was loaded with 400 

milligrams of HNS powder, and then evacuated for several hours 

before starting the compression sequence. The applied axial 

stress on the powder was determined by carefully measuring the 

pressure of the hydraulic fluid used to drive one of the pistons. 

The transmitted axial stress was measured using a stationary load 

cell in contact with the opposing piston. The relative displace- 

ment of the pistons was measured using two LMT (linear variable 

differential transformer) displacement instruments. The electri- 

cal signals corresponding to applied stress, transmitted stress, 

and relative piston displacement were converted from analog to 

digital form and recorded using a small laboratory computer. 

During a compression experiment, five to ten minutes were allowed 
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of shock temperatures predicted by the present and previous 

formulations for HNS at an initial density of 1.60 g/cm . The 

possibility of melting has not been considered. At a shock 

pressure of 10.0 GPa the present formulation gives a temperature 

of 995 K, which is 230 K higher than previously calculated. Such 

a difference will have a strong effect on an analytical model of 

the decomposition chemistry. The temperatures shown in Fig. 11 

assume a homogeneous shock-compressed state, and therefore do not 

reflect the heterogeneous heating that actually occurs in porous 

HNS due to hot-spot formation processes. However, studies on the 

shock-initiation properties of very fine-grained HNS indicate 

that this material behaves very much like a homogeneous explosive 

over a wide range of initial shock pressures.25 this 

particular material, temperatures predicted simply with the 

present equation of state formulation may be quite useful. 

3 

Hence, for 
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formula for the elastic expansion of a thick-walled cylinder 

subjected to internal pressure. The value of the constant "an 

used in Fig. 1 is within 7% of the value calculated from the 

cylinder dimensions and the available elastic constants for 

tungsten carbide. In order €or the axial stress to represent the 

hydrostatic presscre in the sample, the stress must be suffi- 

ciently large so that sample shear strength is negligible. The 

corrected measurements shown in Fig. 1 agree closely with the 

results from Refs. 13-15 over the range from 0.5 to 1.4 GPa. 

Above 1.4 GPa there was evidence of increasing friction in the 

compression fixture, with transmitted stresses dropping progres- 

sively relative to applied stresses. 

Figure 2 shows the initial grain size distributions for the 

three HNS powders used in the static compression experiments. 

Corresponding values of specific surface area are also given. 

The typical initial grain shape is that of a rod, with the 

length-to-width ratio increasing from near unity for the smallest 

grains (HNS-FP) to more than ten for the largest grains (HNS-11). 

Figure 3 shows the static compression measurements on these 

powders, corrected for radial expansion of the test fixture, over 

the axial stress range 0-0.8 GPa. The "Murnaghan fit" shown on 

this figure will be discussed shortly. The primary experimental 

uncertainty remaining in these curves is the measurement of 

powder mass in each case. Sample masses were measured before and 

after compression tests, with typical differences of 1% occurring 
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due to losses in loading and removing the samples. The mass 

value used for the HNS-I case was chosen to be the direct average 

of these two measurements. The mass values used for the other 

two cases were chosen from within their initial and final 

measurements so that the resulting densities at 1.0 GPa matched 

that of HNS-I. The result of this procedure was an extremely 

close match in densities (to within 0.1%) over the range 0.8 to 

2.0 GPa. This result is shown for the entire stress range in 

Fig. 4 .  At any given stress below 0.6 GPa. the largest-grained 

powder, HNS-11, is compressed to a higher density than the 

intermediate-grained HNS-I, which in turn is compressed to a 

higher density than the smallest-grained powder, HNS-FP. In a 

complementary study, l6 we have examined HNS powders recovered 

from samples previously pressed to stresses from 0.1 to 2.0 GPa. 

This study has established that grain fracturing is an important 

compaction mechanism at stresses up to - 0.2 GPa for grains 
having length-to-diameter ratios larger than unity. At higher 

stresses plastic deformation results in grains that are roughly 

spherical in shape, with flattened surfaces at boundaries common 

to adjacent grains. 

Above 0.8 GPa, the powder compression curves show no depend- 

ence on the initial grain size distribution. At these stresses 

we expect that shear strength is negligible, and that plastic 

flow at grain boundaries has reduced porosity to a negligible 

level. Thus, within the stress range 0.8-2.0 GPa, the axial 
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compression curves can be treated as isothermal compression 

curves of solid HNS under hydrostatic loading. Consequently, we 

have fitted the experimental curves in this range with the rela- 

tion for the isothermal compression of a Murnaghan solid: 

BTo V -N P-Po - 7 [(TI -11 . 
0 

(3 )  

The initial isothemal bulk modulus BT and the exponent N were 

chosen so as to minimize the standard deviations from the ex- 

perimental curves. The result is shown in both Figs. 3 and 4. 

Above 0.8 GPa, the d6nSity predicted by this fit agrees vith the 

experimental curves to within 0.1%. 

0 

PEW EOUATION OF STATE PARAMETERS FOR SOLID HNS 

The Murnaghan fit to powder compression measurements 

2 provides information that was not available to Sheffield et al. 

when they determined the parameters for their Helmholtz free 

energy formulation (Table I). In addition to the two new 

parameters from this Murnaghan fit, an important change has 

2 occurred in available thermophysical data. Sheffield et al. 

7 used a value of 1.67 x 10 cm2/s2-K for the specific 

constant pressure, C . The original source for this 

identified this number as simply an estimate, with no 
P 

heat at 

17 value 

further 

elaboration. More recently, several experimental measurements of 

this specific heat have been reported. la ’ l9 These independent 

measurements are in good agreement, and for present purposes we 
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7 2 2  use the most recent value” of 1.008 x 10 cm /s -K (at 293 K). 

The value of y/V follows from the thermodynamic identities: 

where B is the coefficient of volumetric thermal expansion. An 

experimental value for this coefficient is given in Ref. 18. The 

initial isentropic bulk modulus B is found from Eq. (4) once 

r/V is determined, and the specific heat at constant volume then 

follows from: 

so 

The resulting set of new parameter values to describe the solid 

HNS equation of state according to Eq. (1) is given in the fol- 

lowing Table: 

TABLE 11. New Parameter Values for HNS 

- 9.1065 GPa BT 

N - 10.973 

Y / V  - 2.828 g/cm 

cV - 0.889 x 107cm2/s2-K. 

3 

The shock Hugoniot relations for initially solid HNS are readily 

found from Eq. (1). The themodynamLc identities P - - (aF/aV)T 

and E - F + TS are used to find an equivalent equation state of 

169 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
5
 
1
6
 
J
a
n
u
a
r
y
 
2
0
1
1



in the form P - P(E,V). The shock jump condition for internal 

energy, 

E - Eo - $ (P+Po)(Vo-V) , ( 6 )  

is used to eliminate internal energy in the P - equation 

of state, giving an expression which defines the shock Hugoniot 

curve in the p-V plane. in 

the Appendix. 

P(E,V) 

Details of this derivation are given 

EXTENSION TO INTIALLY POR ous HNS 

Since HNS materials are pressed from a powder to some den- 

sity less than crystal density. practical applications of this 

equation of state necessarily involve initial conditions with 

finite porosity. In the previous HNS studies using this equation 

of all shock-compressed states were assumed to be fully 

compressed to a non-porous state. The initial specific volume of 

the remains the 

reciprocal of crystal density at ambient conditions, and ao>l. 

With this notation, the shock jump condition for internal energy 

becomes : 

porous material was defined to be aoVo, where V 
0 

(7) E - Eo - 5 1 (P+Po)(aoVo-V) . 
The derivation of the shock Hugoniot cume in the p-V plane is 

exactly as before, except that Eq. (7),is used instead of Eq. ( 6 )  

to eliminate E from the equation of state in the form P - P(E,V). 
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A more realistic assumption for initially porous material is 

that finite porosity persists in the shock-compressed state 

through If the specific volume V 

is now defined to include any existent porosity, and V is 

defined to be the specific volume of the solid (non-porous) 

material at the same pressure and temperature, then a convenient 

measure of porosity is given by: 

some range of shock pressures. 

a - v/vs (8) 

Finite porosity corresponds to e l ,  and a is simply the ratio of 

crystal density to the density of porous material at ambient 

conditions. Suppose that: 

P - f(E.Vs) (9)  

is an equation of state for the solid material at stresses suffi- 

ciently high so that shear strength can be neglected. If the 

specific internal energy of the porous material is assumed to be 

the same as that of the solid material under identical conditions 

of pressure and temperature, then Herrmann" identified the 

equation of state for the porous material to be: 

P - f(E. V/a) , (10) 

where f is the same function used to describe the solid material. 

In general. a is a function of the thermodynamic state: a - 
a(E,P). Along the normal Hugonlot from ambient conditions, 

however, pressure and internal energy are related. Along this 

curve, then, we have ecl(P). Herrmann assumed further that this 

a-a(P) relation will hold in the general vicinity of the Hugoniot 
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cuwe as well. Thus, if an equation of state in the form of Eq. 

(9) is available for the solid material, then finding an equation 

of state in the form of Eq. (10) for the porous material reduces 

to the determination of the "compaction relation" a-a(P). 

Herrmann presented a general form of the compaction relation for 

a ductile, porous material based on its elastic and plastic 

properties. 

Carroll and Holt21 stated that a better representation of 

the pressure in the porous material is given by: 

(11) 
1 
a P - - f(E, V/a) . 

Assuming only hydrostatic stresses and incompressible, elastic- 

perfectly plastic material behavior. Carroll and Holt derived a 

rate-dependent compaction relation. In the plastic regime, the 

static form of this relation depends only on the material's yield 

strength. Butcher et a1.22 extended the analysis of Carroll and 

Holt to include deviatoric stresses and material viscosity, and 

to account for work hardening during compaction. Good agreement 

was achieved with both static and shock compaction measurements 

on porous aluminum. 

A careful effort :o determine an accurate compaction rela- 

tion for porous HNS is beyond the scope of the current study. 

Rather, such an effort will be the nature of our future work. 

For present purposes, an approximate compaction relation used 

previously for some porous metals will be utilized in order to 
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illustrate calculations of shock-compressed states in initially 

porous HNS. Herrmann2' noted that a simple quadratic form had 

been adequate for &scribing shocked states in porous iron. This 

form is given by: 

P -P $zzl 
* (- )2 , a -1 Ps-Pe e 

where P is the pressure corresponding to complete void elimina- 

tion (a-l), and the subscript "en denotes values at the elastic 

limit. Herrmann also derived an approximate expression for the 

speed of a weak compaction wave: 

where C - (V B )li2 is the bulk sound speed in the solid, and 
O so 

0 

a ' is the slope of the a(P) relation at the elastic limit. For 

an a(P) relation in the form given by Eq. (12): 

- 2 (ae - 1) 
's-'e 

a ' -  

Measurement of the speed of a weak 

( 14) 

compaction wave gives a value 

for a ' through Eq. (13), and Eq. (14) can then be used to find 

the value of Ps needed to use the a(P) relation given by Eq. 

12 
(12). 

planar-impact techniques were used to introduce 1.5 GPa ramp 

In our earlier study of the compaction of HNS powders, 
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waves (0.6 

density of 

"toe" of 

ps rise times) into HNS samples initially pressed to a 

1.60 g/cm . The observed propagation velocity of the 

these ramp waves was 1.73 k .03 lan/s. Using this 

3 

measurement as the speed of a weak compaction wave in material at 

this initial denslty, together with the parameter values from 

Table 11, allows us to use Eq. (13) to find: 

-1 a ' - -0.123 GPa 
0 

The elastic strength has been assumed to be negligible in this 

calculation, so that ambient Conditions are used instead of 

conditions at the elastic limit (i.e.. ae-ao and Pe-Po). Using 

this value in Eq. (14), we find: Ps - 1.43 GPa. By using this 

value of Ps in Eq. (12), an approximate compaction relation is 

defined for HNS at an initial density of 1.60 g/cm . This a(P) 

relation has a reasonable slope near ambient conditions, but 

whether or not the consequence that a -+ 1 as P -+ 1.43 GPa is a 

good approximation under shock-compaction conditions is not yet 

known. 

3 

In order to test this simple compaction relation, shock 

Hugoniot cunes have been calculated for comparisons with avail- 

able measurements. Because the speed of a weak compaction wave 

only has been measured at an initial density of 1.60 g/cm.', a 

linear variation of this speed with a was assumed to hold from 

the bulk sound speed at a - 1 (1.74 g/cm ) through the measured 

speed at a - 1.0875 (1.60 g/cm ) .  With this assumption, 

0 
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parameters used for the approximate a(P) relation at various 

initial densities are listed in Table 111. 

TABLE 111. P arameters for Amrox imate a(P1 

Jnitial Densitv-dcm 3 'b - km/s 's - GPa 
1.71 2.30 (est.) 2.42 

1.60 1.73 (meas.) 1.43 

1.58 1.62 (est.) 1.26 

These three a(P) relations are plotted in Fig. 5. 

In calculating shock Hugoniot conditions for initially 

porous states, the equation of state for solid HNS in the form 

P-f(E,V) (see Appendix) is rewritten in the form of Eq. (11): 

P - f(E, V/a) 

where a(P) is given by Eq. (12) and the parameters in Table 111. 

Internal energy is again eliminated by substituting the shock 

jump condition as it appears in Eq. (6), with specific volumes 

corresponding to the porous material. The resulting expression 

relates P, a(P), and V, and defines the shock Hugoniot curve in 

the P-V plane. calcula- 

tions of shock Hugoniot states for two different initial 

densities. together with the available shock Hugoniot data at 

those densities. Also shown in Fig. 6 are the corresponding 

shock Hugoniot curves calculated in Ref. 2. The two sets of 

Figure 6 shows the results of numerical 
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calculations agree closely over the range of available data, but 

at higher particle velocities the shock pressures predicted from 

the present analysis are progressively higher than those 

predicted in Ref. 2. 

HIGH PRESSURE SHOCKED STATE MEASUREMENT 

In Fig. 6 the Hugoniot curves calculated in the present 

study are very close to the original predictions of Sheffield et 

a1.2 over the stress range of the experiments. The comparisons 

shown in this figure, therefore, are not conclusive in estab- 

lishing that more accurate predictions of shock-compressed states 

are now possible. To address this uncertainty, we conducted a 

planar impact experiment as shown in Fig. 7. HNS-I pressed to a 

density of 1.60 g/cm was accelerated to a velocity of 1.33 km/s, 3 

then impacted into a 2-cut sapphire target. VI SAR 

in~trumentation~~ was used to record the particle velocity his- 

tory at the impact interface. The shock Hugoniot properties of 

2-cut sapphire24 were then used to find the stress history of the 

HNS/sapphire interface. The result is shown in Fig. 8. The 

unusually slow, stepped rise in this stress history is due to a 

projectile-driven gas shock wave reverberating between the target 

and projectile faces. This gas shock resulted from poor vacuum 

ahead of the projectile and/or blow-by of gas from behind the 

projectile. The relatively slow compression shown in Fig. 8 

resulted in a significant delay in the onset of observable cherni- 

cal reactivity. For sharp-shock loading to the same final 
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4 stress, extrapolated results from an earlier study by Hayes 

indicated that a delay of only -5 ns could be expected. The 

observed delay was approximately 200 ns, which made the deter- 

mination of unreacted state properties much easier. The HNS 

stress-particle velocity state measured in this experiment is 

shown in Fig. 9 .  together with Hugoniot curves predicted by the 

current analysis and as predicted by the original analysis of 

Sheffield et a1.2 The uncertainty in the measured stress is 

primarily due to uncertainty in the sapphire Hugoniot curve. The 

8.5 GPa stress level in the HNS is more than twice that obtained 

in previous shock Hugoniot experiments. The accuracy of the 

present analysis is strongly supported by the agreement shown 

with the measured state. However, an important consideration is 

whether the measured state could be displaced from the shock 

Hugoniot due to a reduction in entropy production resulting from 

the finite compression rate. As an example of the utility of the 

equation of state formulation, we can examine this displacement 

from the shock Hugoniot for the limiting case of an isentropic 

compression. First, the thermodynamic relation that results from 

combining the first and second laws. dE - TdS-PdV. reduces to: 
dE - - PdV (15) 

for an isentropic process. In the Appendix, Eq. (A15) is an 

equation of state for solid HNS in the form P - f(E.V). As 

discussed in the previous section. an equation of state for 

porous HNS can be written: 
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P - ' f(E.V/a) , a 

where a-a(P) is the compaction relation. This can be rewritten 

in the form: 

E - E(aP, V/a)  , (16) 

where the pressure dependence includes that introduced by a(P). 

Differentiating Eq. (16) and combining with Eq. (15): 

dE - (g)vdP + (g)pdV - - PdV (17) 

Equation (17) is a differential equation for the isentrope in a 

P-V plane. Once a compaction relation a(P) is specified, this 

equation can be integrated numerically. 

Figure 10 shows a calculated isentrope for HNS at an 

initial density of 1.60 ~ C I P  , The simple quadratic form for 

a(P) (Fig. 5 )  was used in this calculation. The predicted 

Hugoniot curves and the measured state are also shown in the P-V 

plane for comparison. The specific volume identified with the 

measured state is the value given by the shock jump conditions 

under the assumption of steady wave propagation. In reality, the 

specific volume of this state lies somewhere between the Hugoniot 

and the isentrope at the measured pressure. At the pressures 

shown, the calculated isentrope is insensitive to the particular 

form chosen for a(P). Although an isentropic compression of 

porous M S  to high densities is not physically realistic, this 

curve represents a limit t o  displacements from the shock Hugoniot 

for adiabatic processes in which entropy production may be 

3 

178 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
5
 
1
6
 
J
a
n
u
a
r
y
 
2
0
1
1



reduced. For compressions to a particular pressure, an 

isentropic process results in a lower specific volume than that 

produced by a shock wave. At the measured pressure, however, the 

predicted Hugoniot and isentrope curves are still relatively 

close to each other, in comparison to the Hugoniot curve 

predicted by the previous formulation. 

CONCLUSIONS 

In the present study, we have used careful measurements 

of isothermal compressibility, together with revised values for 

thermophysical constants, to improve the equation of state for- 
2 mulation for HNS initially proposed by Sheffield et al. 

Measurement of a high-pressure shocked state supports the ac- 

curacy of the new formulation. Shock Hugoniot curves calculated 

using the new equation of state parameters lie above the previous 

calculations at pressures above 2.5 GPa, so that shock pressures 

generated in HNS under high-velocity impact conditions are 

significantly higher than previously thought. A major remaining 

task is the formulation of an appropriate compaction relation 

a(P) for porous HNS, although very simple approximations give 

good agreement with available low-pressure shock Hugoniot data. 

5 

The use of more recent determinations of specific heat 

values has a very strong effect on predicted shock temperatures. 

Because these specific heat measurements have resulted in a much 

lower value than the estimated value used previously, predicted 

shock temperatures are much higher. Figure 11 shows a comparison 
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to lapse after an incremental increase in hydraulic fluid pres- 

sure before the stresses and relative displacement were measured. 

The total time for an experiment to 2.0 GPa on a given powder 

sample was between three and four hours. 

In order to make quantitative use of the powder compression 

data, all possible corrections to account for experimental aber- 

rations needed to be examined. The elastic compression of the 

tungsten carbide pistons was measured in tests without powder 

samples up to the maximum stress of 2.0 GPa. Friction due to 

lateral expansion of the pistons against the cylinder walls was 

not apparent in these tests. A significant correction was neces- 

sary to account for radial expansion of the thick-walled tungsten 

carbide cylinder enclosing the sample and pistons. In order to 

determine the necessary correction, compression tests were per- 

formed on a reference material whose isothermal compressibility 

has been extensively studied. Figure 1 shows the results of 

using single-crystal sodium chloride to determine the required 

radial expansion correction. The axial stress is the average of 

the applied and transmitted stresses. The corrected specific 

volume V at any pressure P is in the form: 

(2) 
1 2 V - V (1 + P/a) , 

1 where V is the measured volume neglecting radial expansion, and 

lall is a constant that depends on the elastic constants and 

dimensions of the cylinder. Eq. (2) follows from the handbook 
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FIGURE 1 

Measurement of the isothermal compression of single-crystal 

sodium chloride. Comparisons with previous studies were used to 

determine the required correction for radial expansion of the 

cylinder enclosing the sample and pistons. 
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FIGURE 2 

Grain size distributions for the three HNS powders used in 

isothermal compression experiments. The corresponding specific 

surface areas are also shown. 
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AXIAL STRESS - GPa 

FIGURE 3 

Measurements of powder density at average axial stresses up to 

0.8 GPa. The Murnaghan curve is a fit to measured densities at 

higher pressures (Fig. 4). 
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2 
MURNAOHAN FIT 

MURNAGHAN FIT : 

TO 
P-Po = N [ ( v/v, rH-l] 
Br0 = 9.1065 OPa 

N = 10.973 
q-.. 'I 
F 

91 
- 1  I I I I I I 1 I I . .  

0.0 012 014 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
AXIAL STRESS - GPa 

FIGURE 4 

Measured powder densities at axial stresses up to 2.0 The 

individual powder curves collapse to a single curve at higher 

pressures, and are closely fit by the expression for isothermal 

compression of a Murnaghan solid. 

GPa. 
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1 .oo 1.02 1.04 1.06 1.08 1.10 
a 

FIGURE 5 

Approximate compaction relations Q(P) for HNS at different ini- 

tial porosities. 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
PARTICLE VELOCITY - KM/S 

FIGURE 6 

Comparisons at two different initial densities between shock 

Hugoniot data and Hugoniot states predicted using the present 

equation of state formulation and the approximate compaction 

relations shown in Fig. 5 .  Hugoniot states predicted by the 

previous analysis (Ref. 2) are also shown. 
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SCALE : - 
0 20 40MM 

PROJECTILE 
VELOCITY : 

HNS-I 
1.6 G/CM3 

DIFFUSE-REFLECTING 
ALUMINUM COATING 

1 / 
ip 
R 
1 DUAL-DELAY VlSAR 
2_32 
- 
\SAPPHIRE WINDOW 

25 MM THICK 

‘SAPPHIRE BUFFER 
1.6 MM THICK 

25 MM DIAMETER 
4 MM THICK 

FIGURE 7 

The reverse-impact configuration used in a gas gun experiment to 

measure a high-pressure shock Hugoniot state in HNS having an 

initial density of 1.60 g/cm . 3 
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i\ INITIAL DENSITY 1.60 WCM3 

9 1  

GAS SHOCKS 
PRECEDE MPACT 

/ 

FIGURE 8 

The stress history at  the HNS/sapphire impact interface obtained 

in the reverse-impact experiment. The unusually slow r ise  is  due 

to  a strong gas shock reverberating between the projectile and 

target faces. 
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s 
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INITIAL DENSITY 1.60 G/CM3 4- r 
r 

2 
c3 8- 

MEASUREDSTATE I -  

PREDICTED HUGONlOT 

HUGONlOT 
( REF. 2 1 

0.90 1 .oo 1.10 1.20 1.30 1 A0 
PARTICLE VELOCITY - KM/S 

FIGURE 9 

Comparisons between the measured high-pressure state in HNS, the 

Hugoniot states predicted by the current equation of state for- 

mulation, and the Hugoniot states predicted by the previous 

analysis (Ref. 2)  for an in i t ia l  density of 1 . 6 0  g/cm . 3 
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INITIAL DENSITY 1.60 G/CM3 

5 0.46 0.47 0.48 0.49 0.50 
SPECIFIC VOLUME - C d G  

FIGURE 10 

Comparisons between the measured s tate  and the predicted Hugoniot 

curves in  the P-V plane, together with an isentropic compression 

curve calculated using the current equation of s tate  formulation. 

The spec i f ic  volume fo r  the measured s tate  was calculated assum- 

ing steady wave propagation. 
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FIGURE 11 

Comparisons between the shock temperatures predicted by the 

present analysis and those predicted by the previous analysis 

(Ref. 2) for an i n i t i a l  HNS density of 1.60 g/cm . 3 
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APPENDIX: EOUATION OF STATE DERIVATION 

The Helmholtz free energy for solid, unreacted HNS 

proposed by Sheffield et al.L is given by: 

To derive this expression, it is first assumed that the internal 

energy can be separated into two independent components which 

depend only on temperature and on volume. respectively. As 

discussed by Cowperthwaite, this initial assumption results in a 

P-V-T equation of state in the form: 

(All i?E P - (aT)V T + g(V) 

where (g)v is either a constant or a function of V only, f(V). 

If Cv is assumed to be constant, which is often assumed for 

solids above their Debye temperature, the P-V-T equation of state 

has the general form: 

, 

P - f(V) T + g(V) , 

and an E-P-V equation of state has the form: 

196 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
0
5
 
1
6
 
J
a
n
u
a
r
y
 
2
0
1
1



V where CJf(V) - (aE/aP)v - - and gl(V) is a function related to 

g(V). Eqs. (A2) and (A3) are equivalent to assuming a Mie- 

Grbeisen equation of state.6 

- (BP/aT)V/CV, it can be seen that adding the assumption - 
constant is equivalent to assuming (~P/c~T)~ - constant. This 

assumption often has been used to determine isentropes and 

isotherms that neighbor experimentally determined shock 

H~goniots.~ Letting b - (L3P/aE)v - y/V , Eqs. (A2) and (A3) 

become: 

7 '  

Using the thermodynamic identity 

V 

P - bCvT + g(V) 

and 

E - P/b + gl(V) (AS) 

The 

these expressions is: 

form of the Helmholtz free energy function that corresponds to 

(A6 ) 

which can be shown by finding S - - (aF/aT)V , calculating E - F 

+ TS, and comparing with Eqs. (A4, AS). If the isothermal com- 

pressibility of solid HNS is assumed to be that of a Murnaghan 

solid, then it has the form: 
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where P is hydrostatic pressure. This assumption allows the 

determination of the functions not yet specified in Eq. (A6). 

Integrating Eq. (A7) along the T - To isotherm gives: 

BT 
P - Po - -f [ ( y - l ]  

0 

Combining Eqs. (A4) and (A8): 

BT 
g(V) - Po - CvbTo + [($)-N-l] . 

0 

Finally, since P - CvbT + g(v) - - (aF/aV),, we have: 

dg/dV + bg + b dgl/dV - o 

Substituting Eq. (A9) into Eq. (A10) and integrating: 

Substituting Eqs. (A9) and (All) into Eq. (A6) gives the 

expression for the Helmholtz function as it appears in Eq. final 

(1). 

Equivalent forms of this equation of state can be found 

easily. First, a P-V-T equation of state is given by: 
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An S-T-V equation of state is given by: 

S - - (BF/BT)V - So + Cv [ln(T/To) - i (Vo-V)] 
Internal energy, E - F + TS, is given in the form E(T,V) by: 

E - Eo + Po (Vo-V) + Cv (T-To) - 5 CvTo (Vo-V) 
B V  

+ -  To O 

N(N-1) 
{(g)-N+l - (N-l)(l-V/Vo) -1) 

To simplify subsequent expressions, let 
BTo V -N 

fl(V) - CvTo(Vo-V), f2(V) - 7 [ (7) -11 , 
0 

B V  

N( N- 1) ' (5) - (N-l)(l-V/Vo) -1) To V -N+l and f,(V) - - 
Thus, Eq. (A14) can be written: 

E - Eo - Po(Vo-V) + CV(T-To) - fl(V) + f3(V) . 
Substituting for C (T-T ) in this expression using Eq. (A12): v o  

P-Po f (V) 
E - Eo - -  (-,Dl + Po(Vo-V) - flW - & + f3W , (A151 

which is an equation of state in the form E - E(P,V) or P - 
P(E,V). 

The shock Hugoniot relation for solid HNS is found by 

combining Eq. (A15) with the shock jump condition for internal 

energy, E-Eo - (1/2)(P+Po)(Vo-V). The result defines the 

Hugoniot curve in the P-V plane: 
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